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Abstract—The problems of minimizing the volume of purely conducting and conducting-convecting fins

are solved. Exact solutions are obtained for the corresponding cross sectional areas and the temperature

distributions. An approximate solution is also given for a convecting-radiating fin. The results are plotted
and discussed.

NOMENCLATURE
a, cross sectional area of fin:
a,, cross sectional area of fin at x = 0;
B;, Biot number; ‘
h,  heat-transfer coefficient;
J,  heat flux at the base of the fin:
k,  thermal conductivity;
L, length of fin;
n, hik;
Ng, Generation number;
qo, uniform heat source distribution ;
g, heat source distribution ;
T, temperature;
T,.. ambient temperature:

T,, temperature at the base of fin, x = 0;
V, volume of fin;

x, length of fin:

o, Stefen-Boltzmann constant:

/4,  Langrangian multiplier:

0. temperature, T— T,,:

&,  emissivity;

v, ¢eo/k.

1. INTRODUCTION

THE FIRST extensive study of the heat transfer
from fins was carried out by Harper and Brown
[1]. Mathematical fin theory have been dis-
cussed by Jakobi [2] and Schneider [3] among
others. For pure conducting fins, a criterion for

optimum shape was proposed by Schmidt [4]
which was later proved by Duffin [5]. Optimi-
zation of a rectangular fin was studied by Liu [6].
The effect of internal heat generation on the
optimal shape was first considered by Minker
and Rouleau [7] but a more rigorous treatment
was given by Liu [8] for heat generations which
are directly proportional to the temperature.
Optimum shape of a purely radiating fin was
obtained by Wilkins [9-11]. Recently, approxi-
mate optimum fin design for boiling heat transfer
was considered by Cash et al. [12]. In the
present work some optimal design problems in
heat transfer are treated. In the sections that
follow first a purely conducting fin with arbitrary
heat source distribution is considered. Exact
solutions are obtained for the cross sectional
area and the corresponding temperature field
which minimizes the maximum temperature in
the domain.

The problem is then extended to a conducting-
convecting fin with an arbitrarv heat source.
For a given rate of heat transfer a variational
problem is set up which minimizes the volume
of the fin. Exact solutions are found for the
special case of uniform source distribution.
Finally the case of a convecting-radiating fin is
studied. For small rate of radiative transfer the
equation of heat transfer is linearized and
approximate optimal thickness is obtained.
The results are plotted and discussed.
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2. MINIMIZING THE MAXIMUM TEMPERATURE

Consider an arbitrary heat generation in a
thin region with one end insulated and the other
end is kept at constant temperature. The
optimization problem is to find the cross
sectional area in such a way that the maximum
temperature which occurs at the insulated
boundary becomes a minimum for a fixed
volume of the conducting material.

Assuming that the region is sufficiently thin
so that the one dimensional approximation is
valid, the equation of heat conduction becomes

d dT
T [a(x) a—x—] = —qlx) (1

where a(x) is the cross sectional area and g(x)
is the heat source distribution divided by the
thermal conductivity of the medium. The total
volume of the material is assumed to be fixed, i.e.

L
V= j'a(x) dx, (2)
0

where L is the length of fin. The boundary
conditions are

T(0) = 0, (3a)

d—T—(L) = 0. (3b)
dx
In order to minimize the maximum tempera-
ture it is advantageous to find the formal
solution of differential equation (1) under the
boundary conditions (3). Integrating equation
(1) from L tox and using the boundary condition
(3b) we find
L
T
a(x)g-— = Jq{a) da. (4)
dx
Dividing equation (4) by a(x) and integrating
once more from 0 to x and making use of the
boundary condition (3a) yields,
x L
1
T(x) = | — | g(e) da d. (5
(x) j o m§¢ )dadf )

B
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From the above it is obvious that the maxi-
mum temperature occurs at the insulated
boundary, i.e.

L
T(L) = Jgg)dx. {(6)
a(x)
0
where
L
Q(x) = | qla) da. (7)

Q(x) represents the total heat generation from
the insulated boundary up to the point x.

The extremization problem then is to find the
minimum of (6) under the integral equality
constraint (2). This is a simple problem in
calculus of variation [13]. Accordingly,

L
5 [-Q—‘i’ + wx)] dx =0 ®)
a(x)
0
where 4 is a constant Lagrangian muitiplier
and o denotes the variation operator. Euler’s
equation for the variational problem (8) is

simply,

— %g—) +A=0, 9
or
"
a(x) = (Q()i)> . (10)

The constant A is easily obtained by direct
substitution of (10) in equation (2). The optimal
cross sectional area then becomes

alx) = V[Q(x)] */:f; [Q(x)]* dx. 1y

The temperature distribution may then be
obtained from (5).

As an example let us consider the case of a
heat source distribution of the form
M=z0

q = go(1 — x/L™, (12)
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For this case we have
_ %L 1
Q) = 3= x/LyM

_(M+3)V(
T 2L

4q,L
(M + )(M + 3)*V
x [1 = (1 — x/LyM+32]

The maximum temperature then becomes

4qol43
(M + 1)(M + 3)*V

comparison of equation (14) with the maximum
temperature in a uniform cross section fin gives
a reduction factor of [(M + /(M + 3)]2.

For the special case of M =0, that is a
uniform heat source distribution the above
reduces to

a(x) 1— x/L)(M+1)/2 (13)

T(x} =

T = (14)

q=4qo
ax) = 37 (1 - x/Lp (15)
T(x) = i"q‘;,—l‘a [1—(1 - x/D)}
and
(L) = 4‘;‘;1“3 (16)

Comparing the above with the maximum
temperature in a uniform cross section fin we
note that the reduction is about 11 per cent.

The optimal fin cross sections for various
types of heat sources are plotted in Fig. 1. It is
observed that the optimal cross sectional areas
for M <1 are concave and for M > 1 are
convex. For the special case of constant heat
generation, the optimal temperature profile and
the temperature distribution of a constant area
fin are plotted in Fig. 2. It is interesting to point
out that the optimal temperature is less than the
uniform case everywhere in the fin.
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F1G. 1. The optimal cross sectional areas for various heat
generations.

|
_ 'or Constant area
-~
G
K
E o5k Optimal
N
L 1
00 05 10

x/L

FiG. 2. The temperature distributions in the optimal finand a
constant area fin.

3. MINIMUM WEIGHT DESIGN OF A CONVECTING
FIN

In the present section we are concerned with
the minimum weight design of a fin with arbitrary
heat source distribution and constant heat flux
at the base. With no loss in generality the width
of the fin is chosen to be 1 ft.

The equation governing the heat transfer in a
thin fin is

dix[a(x)j—:]— nT-T,)+4qx)=0, (17)

n = hik, (18)

where h is heat transfer coefficient, k is the
thermal conductivity, and T, is the temperature
of the ambient fluid. The boundary conditions
are
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dT
a(x) —

&, = —J, (19a)
T|ieo = To (19b)
T),op = Ta (19¢)

The boundary condition (19¢c) implies that the
tip of the fin is at the same temperature as the
surrounding medium. This has been discussed
by Minkler and Rouleau [7] and was obtained
by Liu [8] through his variational scheme.
In order to simplify the problem let

0=T-T,. (20)

Equation (17) and the boundary conditions
(19) then become

d de
_— [a(x)d—)z]—— nd + g(x) =0, 21)

dx
and
a(x)g?c - = —J, (22a)
Olieo =Ty — T, = 6,, (22b)
0l.-L =0. (22¢)

The optimization problem is the following: For
a given heat flux —J per unit width at the base
of the fin, the thickness a(x) is to be determined
in such a way that the total volume
L
V = {ax)dx 23)
0
becomes a minimum. In order to put the above
optimization problem in variational form we
rewrite the second order differential equation
(21) in terms of two first order differential
equations constraints, i.e.

(24)
(25)

@ =n
{any —nB+gq=0
where prime denotes differentiation with respect
to x. Introducing the Langrangian multipliers

2,(x) and A,(x) the extremization condition
becomes,
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L
df[a+ il —n) + ilan + an
0
-0+ @ldx=0. (26)

The Euler-Lagrange equations satisfying (26)
are

. d .
L+ anmy — —(4m) =0 (27)
dx
5 ., d .
— Ay + A0 — a;(,tza) =0 (28)
. d4,
ny — = 0 {29)

The solutions of the set of differential equations
(279+29) together with (21) and boundary
conditions (22) give the optimal thickness and
the corresponding temperature field. Eliminating
4, and 4, between equations (27)29) we find

ng + af9” ~ a'0* ~ 20"%a
+2a'09" = 0.

Equation (21) with the aid of boundary condition
{23a) may be integrated once to give

(30)

a(x)—_:g,-{f [nb(e) — gte)] doe — J}.  (31)
0

Differentiating equation (21) and subtracting
from (30) yields

20"%a = 2n6"* - 24" - @4 (32)

It is now possible to apply a numerical technique
by first assuming a 6'(0) and integrating step by
step up to the point x = Land check to see if 6
becomes zero and if not correcting ¢(0) and
repeating the integration. This procedure is well
known for solving two points boundary value
problems [14].

If the heat source distribution is constant,
that is

q(x} = gy, (33)
it is possible to find exact solutions,
LJ X\  golx
= 4+ = — - = . (34
a= + B n(Lx 3 )+ o (34)
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6o
0= T (L — x). (35)
Expressions (34) and (35) are the optimal
thickness and the corresponding temperature
field in the fin respectively. These are valid as
long as expression (34) remain positive.
The areas of the base and the tip of the
optimal fin are

L
4o = g;‘ {36)
LJ B qOL
=— _—, 37
a % = + 8 (37
The total volume per unit width of the material
used in the optimal fin is
By B gB
Introducing dimensionless numbers
nl? kP
B, a0~ Fay Biot number (39)
g0 <
Ng = — = Generation number. {40)
a0,
The optimal cross sectional area becomes
ajag =1 — B[x/L — 0-5(x/L)*] + Ngx/L. (41)

Figure 3 shows piots of the optimal areas for
B; = 2 and various Generation numbers. The
temperature distribution in a uniform thickness
fin is

ala,
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FiG. 3. The optimal cross sectional areas for various
generation numbers.
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0= [90 - %"(1 — cosh J(n/a))]

_sin h J(njag) (L — x)
sin b /(n/ay) L

+ %9- [t — cosh /(n/a)(L — x)}.

(42)

Defining the effectivness of the optimal fin as

_ [Heat flux/volume] of optimal fin
" [Heat flux/volume] of uniform fin

we find
_ tanh \/ (B))
T="JB)1=B/3+ Ng/D1
~ (Ng/B)(1 = 1/cosh(y/B))]

Figure 4 shows the effectivness of the optimal
fin for various Biot numbers and generation

. {43)

3
2 =
Ny =0
n b5
s =02
/ =05
1 L —
0 +0 20

FI1G. 4. The effectiveness of the optimal fin for various Biot
numbers and Generation numbers.

numbers. It is observed that for a wide range
of B, and N the reduction in the volume of the
optimal fin is quite significant.

4. APPROXIMATE MINIMUM WEIGHT DESIGN
OF A CONVECTING-RADIATING FIN

The equation of heat transfer for a convecting-
radiating fin is
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d dT
= (dx)a;)- WT — T,) — T* = T%)

+g9=0 (44

where

A) e

k

with ¢ and ¢ being the Stefan—Boltzmann
constant and emissivity, respectively. The
boundary conditions are the same as that of the
previous case. The optimization problem again
is to find a(x) in such a way that the volume
given by equation (23) become a minimum.

An exact solution of the above optimal design
problem is given by Wilkins [11] for the special
case of a purely radiating fin to absolute zero.
Although this solution is exact it has limited
application due to its highly restrictive assump-
tions.

In the present work we intend to find an
approximate solution for the special case when
heat transfer by radiation is much smaller than
convection. The approximation lies in the
linearization of the nonlinear radiation term in
(44). We write

T* - T4 =(T - TNT* + T*T,,+ TT: + T3)

(45)

=(T - TH)AT, T.) (46)
where
3 2
+ Ql-;-—@Ti + TR @47

Introducing the change of variable (20) the
linearized equation of heat transfer becomes

d de
= [a(x)a-’—c] ~nB+qx)=0 (49

where
n=n+yf(Ty T,. (49)
The equation (48) is similar to (21) with n being
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repiaced by n,. Therefore the optimal thickness
and temperature are given by

fi goLx
n, (Lx 3 ) + o

a(X)=§L—]~

0

(50)

6=2(L-x). (51)

Comparing (50) with (34) it is observed that the
optimal fin is thinner when the radiation is
included.

The analysis in this section is restricted to the
small rate of radiative transfer.
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GUELQUES PROBLEMES D'OPTIMISATION RELATIFS AUX
AILETTES DE REFROIDISSEMENT

Résamé—On traite des problémes dc minimisation du volume des ailettes conductrices et convectantes.

On obtient des solutions exactes coricspondant a des formes de sections droites et 4 des distributions de

température. Une solution approchée est donnée pour une ailette en rayonnement et convection. Les
résultats sont représentés graphiquement et discutés.

OPTIMIERUNGSPROBLEME VON KUHLRIPPEN

Zusammenfassumg—Die Probleme der Optimierung des Volumens von Rippen mit reiner Leitung und mit

Leitung und Konvektion werden gelost. Exakte Losungen erhiilt man fir die einander entsprechenden

Querschnittsflichen und Temperaturverteilungen. Eine Niherungsidsung ist angegeben fiir eine Rippe
mit Konvektion und Strahiung. Die Ergebnisse werden grafisch dargestellt und diskutiert.

HEKOTOPBIE 3AJAYY ONTUMHUBAUNNN, CBASAHHBIE C
OXJIAKJAIOINMII PEBPAMI

Anporanus-—PemanTca 3agaun MUHMMHBAUMU o6bema pebep B cay4aax yucrofl renjo-
N|'OBOFHOCTM WM NpPH Halduuup KOHBexkumM. ITomydyeHW TOUHBIE pellleHiist XUA COOTBETCT-
BYIOWMX [JOManell NONepeYHOro CevYeHMs M pocupeleleHnit remneparvpu. |ipusomwrca
Tarxe npubiIKeHHOe pelieHHe A pefpa B ¢.1y4ae COBMECTHOH KOHBELIUIM M LIBJEYeRIH.
Tposemeno oficy:xmenne Pe3yAbTATOB, KOTOPHE MOCTPOEHH T upHUECKH .



