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Abstract-The problems of minimizing the volume of purely conducting and conducting-convecting fins 
are solved. Exact solutions are obtained for the corresponding cross sectional areas and the temperature 
distributions. An approximate solution is also given for a convecting-radiating fin. The results are plotted 

and discussed. 

NOMENCLATURE 

cross sectional area of fin ; 
cross sectional area of fin at x = 0 ; 
Biot number ; 
heat-transfer coefficient ; 
heat flux at the base of the fin: 
thermal conductivity ; 
length of fin; 
hlk ; 
Generation number ; 
uniform heat source distribution ; 
heat source distribution ; 
temperature ; 
ambient temperature ; 
temperature at the base of fin, x = 0; 
volume of fm ; 
length of fin ; 
Stefen-Boltzmann constant : 
Langrangian multiplier : 
temperature, T - T,; 
emissivity : 
cwlk. 

1. INTRODUCTION 

THE FIRST extensive study of the heat transfer 
from fins was carried out by Harper and Brown 
[l]. Mathematical fin theory have been dis- 
cussed by Jakobi [2] and Schneider [3] among 
others. For pure conducting fins, a criterion for 

optimum shape was proposed by Schmidt [4] 
which was later proved by Duffm [S]. Optimi- 
zation of a rectangular fm was studied by Liu [ 61. 
The effect of internal heat generation on the 
optimal shape was first considered by Minker 
and Rouleau 17 but a more rigorous treatment 
was given by Liu [8] for heat generations which 
are directly proportional to the temperature. 
Optimum shape of a purely radiating fm was 
obtained by Wilkins [9-l 11. Recently, approxi- 
mate optimum fm design for boiling heat transfer 
was considered by Cash et al. [12]. In the 
present work some optimal design problems in 
heat transfer are treated. In the sections that 
follow first a purely conducting fin with arbitrary 
heat source distribution is considered. Exact 
solutions are obtained for the cross sectional 
area and the corresponding temperature field 
which minimizes the maximum temperature in 
the domain. 

The problem is then extended to a conducting- 
convecting fin with an arbitrary heat source. 
For a given rate of heat transfer a variational 
problem is set up which minimizes the volume 
cf the fin. Exact solutions are found for the 
special case of uniform source distribution. 
Finally the case of a convecting-radiating fm is 
studied. For small rate of radiative transfer the 
equation of heat transfer is linearized and 
approximate optimal thickness is obtained. 
The results are plotted and discussed. 
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2. MINIMIZING THE MAXIMUM TJZMPERATURE 

Consider an arbitrary heat generation in a 
thin region with one end insulated and the other 
end is kept at constant temperature. The 
optimization problem is to find the cross 
sectional area in such a way that the maximum 
temperature which occurs at the insulated 
boundary becomes a minimum for a fured 
volume of the conducting material. 

Assuming that the region is sufficiently thin 
so that the one dimensional approximation is 
valid, the equation of heat conduction becomes 

$ 4x) g = --q(x) 
[ 1 

(1) 

where 4x) is the cross sectional area and q(x) 
is the heat source distribution divided by the 
thermal conductivity of the medium. The total 
volume of the material is assumed to be fixed, i.e. 

Y = idx)dx. (2) 

where L is the length of fin. The boundary 
conditions are 

T(O) = 0, (3a) 

dT 
z(L) = 0. (3b) 

From the above it is obvious that the maxi- 
mum temperature occurs at the insulated 
boundary, i.e. 

L 

T(L) = 
s 

QW 
=dx. 

0 

16) 

where 

Q(x) represents the total heat generation from 
the insulated boundary up to the point x. 

The extremization problem then is to find the 
minimum of (6) under the integral equality 
constraint (2). This is a simple problem in 
calculus of variation [ 131. Accordingly, 

6j[E+A4x)]dx=O (8) 

0 

where i. is a constant Lagrangian multiplier 
and 6 denotes the variation operator. Euler’s 
equation for the variational problem (8) is 
sunplY, 

Q(x) --;;,+/l=o, 

In order to minimize the maximum tempera- Or 
ture it is advantageous to find the formal 
solution of differential equation (1) under the a(x)= y+. 

( .) 
(10) 

boundary conditions (3). Integrating equation 
(1) from L tox and using the boundary condition The constant 1 is easily obtained by direct 

(3b) we find substitution of (10) in equation (2). The optimal 

I. cross sectional area then becomes 

s q(a) da. 
X 

14) 
4x) = V[QWl+/s” tQ(x)‘f* dx. (11) 

0 

Dividing equation (4) by 4x) and intearatinx 
once more from 0 to x and making 
boundary condition (3a) yields, 

T(x) = 

_ - 
use of the The temperature distribution may then he 

obtained from (5). 
As an example let us consider the case of a 

heat source distribution of the form 
(5) 

4 = 40(1 - x/W, Ma0 (12) 
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For this case we have 

Q(x) =- - lo+Ll(l x/L)M + 1 

dX)_(M+3)V 
2L 

(1 _ X/L)‘M + 1 )I2 

T(x) = 4q& 
(M + 1) (M + 3)2V 

x ‘[l - (1 i X/L)(M+y. 

The maximum temperature then becomes 

X/L 

FIG. 1. The optimal cross sectional areas for various heat 
generations. 

z7L) = 
4qcz 

(M + 1) (M + 3)2V 
(14) 

A 
comparison of equation (14) with the maximum 
temperature in a uniform cross section fin gives 

1.0 
; 

a reduction factor of [(A4 + l)/(M + 3)] 2. -In 
For the special case of M = 0, that is a so o,5 

uniform heat source distribution the above 2 
reduces to h 

Constant area 

4 = 40 0 I , 
0 05 1.0 

4x1 = $(l - x/L)* (15) X/L 

FIG. 2. The temperature distributions in the optimal fm and a 

77x) hop 

constant area fin. 

= qv [l - (1 - x/L))] 

and 3. MINIMUM WEIGHT DESIGN OF A CONVECTING 

T(L)=@. 
9v 

(16) 

Comparing the above with the maximum 
temperature in a uniform cross section fin we 
note that the reduction is about 11 per cent. 

The optimal fin cross sections for various 
types of heat sources are plotted in Fig. 1. It is 
observed that the optimal cross sectional areas 
for M c 1 are concave and for M > 1 are 
convex. For the speciai case of constant heat 
generation, the optimal temperature profile and 
the temperature distribution of a constant area 
fin are plotted in Fig. 2. It is interesting to point 
out that the optimal temperature is less than the 
uniform case everywhere in the fin. 

FIN 

In the present section we are concerned with 
the minimum weight design of a fm with arbitrary 
heat source distribution and constant heat flux 
at the base. With no loss in generality the width 
of the fm is chosen to be 1 ft. 

The equation governing the heat transfer in a 
thin fin is 

- n(T- Td + q(x) = 0, (17) 

n = h/k, (18) 

where h is heat transfer coelkient, k is the 
thermal conductivity, and T, is the temperature 
of the ambient fluid The boundary conditions 
are 
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dT 

n’x)z X=0 
= -J 

’ (19a) 

Tlxxo = T,, W-4 

Tlx=L = T,. (19c) 

The boundary condition (19~) implies that the 
tip of the fm is at the same temperature as the 
surrounding medium. This has been discussed 
by Minkler and Rouleau [I and was obtained 
by Liu [8] through his variational scheme. 
In order to simplifv the problem let 

0 = T- T,. (20) 

Equation (17) and the boundary conditions 
(19) then become 

d 

[ 1 a(x) !E! 
dx dx 

- n0 + 4(x) = 0, (21) 

and 

d9 
a(x) - 

dx s=,, = 
-J, (22a) 

81 -To-T,=&,, x=0 - GW 

191XZL = 0. (224 

The optimization problem is the following: For 
a given heat flux -J per unit width at the base 
of the fin, the thickness 4x) is to be determined 
in such a way that the total volume 

Y = ;a(x)dx (23) 
0 

becomes a minimum. In order to put the above 
optimization problem in variational form we 
rewrite the second order differential equation 
(21) in terms of two first order differential 
equations constraints, i.e. 

8’=?) (24) 

(a# - ne + q = 0 (25) 

where prime denotes differentiation with respect 
to x. Introducing the Langrangian multipliers 
A,(x) and A,(x) the extremization condition 
becomes, 

s f [a + j.,(e - 9) + E*,(a?f’ + LJ”1 
0 

- e + q)] dx = 0. (26) 

The Euler-Lagrange equations satisfying (26) 
are 

-i, + >.,a - -&a, = 0 (28) 

d/l, 
-nl, --=O. 

dx 
(29) 

The solutions of the set of differential equations 
(27)-(29) together with (21) and boundary 
conditions (22) give the optimal thickness and 
the corresponding temperature geld. Eliminating 
i, and I, between equations (27)-(29) we find 

nQ2 + a&#” - aJ’v2 - 2@‘2a 

+ 2a”BB” = 0. (30) 

Equation (21) with the aid of boundary condition 
(23a) may be integrated once to give 

a(x) = f {i [n&x) - q(a)] da - J). (31) 
0 

Differentiating equation (21) and subtracting 
from (30) yields 

2@12a = 2ny2 - 2a”f12 - B’q’. (32) 

It is now possible to apply a numerical technique 
by first assuming a 0’(O) and integrating step by 
step up to the point x = Land check to see if 6 
becomes zero and if not correcting W(O) and 
repeating the integration. This procedure is well 
known for solving two points boundary value 
problems [ 141. 

If the heat source distribution is constant. 
that is 

4(x) = 903 (33) 

it is possible to find exact solutions, 

LJ .x2 
a=+---- 

8, nJLx ( 1 -_ 
2 

+ qoh 
8,’ (34) 
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8 e” = x (L - x). (35) 

Expressions (34) and (35) are the optimal 
thickness and the corresponding temperature 
field in the fm respectively. These are valid as 
long as expression (34) remain positive. 

The areas of the base and the tip of the 
optimal fin are 

w 
a0 = - 

00 
(36) 

e = 
[ 

e. - $(l - cash &t/u)) 1 sin h J(?I/u,) fL - x) sin h ,/(n/ao) L 

+ ff Ll - cash ,,+/a) (L - x)]. (42) 

Defining the effectivness of the optimal fm as 

[Heat tIux/volume] of optimal Bn 
’ = [Heat ~ux/vol~e] of uniform fin 

we find 

(37) tanh J(Bi) 
’ = J(BJ (1 - BJ3 + N,/Z) [I * ‘43’ 

The total volume per unit width of the material 

LJ 32 qoL? 
a,=--nT+----. 

00 e. 

used in the optimal fm is 

‘v I?J c q,E 
=--n- 

eo 3’28,. 

Introducing dimensionless numbers 

nC hL2 
Bj=--3----= 

a0 J=O 

Biot number 

qoc N,EPx= Generation number. 
0 0 

The optimal cross sectional area becomes 

u/a0 = I- Bi[X/L- S5(X/L)2] + N&L 

(38) 

(39) 

W) 

(41) 

Figure 3 shows piots of the optimal areas for 
Bi = 2 and various Generation numbers. The 
temperature distribution in a uniform thickness 
fin is 

t 

d 
B 

FIG. 3. The optimal cross sectional area5 for various 
generation numbers. 

- (N&l (1 - l/cash (JBJ) I 

Figure 4 shows the effectivness of the optimal 
fin for various Biot numbers and generation 

FIG. 4. The efl’acti~eness of the qSimd fm for various Biot 
numbers and Genaration numbers. 

numbers. It is observed that for a wide range 
of B, and NG the reduction in the volume of the 
optimal fin is quite significant. 

4. APPROXIMATE ~ WEIGHT DESIGN 
OF A CO--TING FEN 

The equation of heat transfer for a convecting- 
radiating fin is 
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where 
EB 

‘=k (45) 

with d and e e being the Stefan-Boltzmann 
constant and emissivity, respectively. The 
boundary conditions are the same as that of the 
previous case. The optimization problem again 
is to find a(x) in such a way that the volume 
given by equation (23) become a minimum. 

An exact solution of the above optimal design 
problem is given by Wilkins [ 1 l] for the special 
case of a purely radiating fin to absolute zero. 
Although this solution is exact it has limited 
application due to its highly restrictive assump- 
tions. 

In the present work we intend to find an 
approximate solution for the special case when 
heat transfer by radiation is much smaller than 
convection. The approximation lies in the 
linearization of the nonlinear radiation term in 
(44). We write 

T4--T4m=(T-T~(T3+T2T,+TT~+T~) 

= (T- TAJfGY,, TJ (46) 

where 

f(T,, T.J -_ (To “8 T’3 + (To “4 Tm)2 7” 

+(T,+ Tm'T2 + T3' 

2 IV8 In. 
(47) 

Introducing the change of variable (20) the 
linearized equation of heat transfer becomes 

- n,e + q(x) = 0 (48) 

where 

n, = n + rf(T,, TV. (49) 

The eouation (481 is similar to (21) with n being 

replaced by n,. Therefore the optimal thickness 
and temperature are given by 

Comparing (50) with (34) it is observed that the 
optimal fin is thinner when the radiation is 
included. 

The analysis in this section is restricted to the 
small rate of radiative transfer. 
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QUELQUES PROBLEMES D’O~IMISATKON RELATIFS AUX 
AILETTES DE REFROIDISSEMENT 

Re!sm&--01~ traite des problknes dc minimisation du volume des ailettes conductrices et convectames. 
On obtient des solutions exactes cot-8 cspondant a des formes de sections drones et a des distributions de 
temperature. Une solution approchC est don&e pour une ailette en rayonnement et convection. Les 

r&hats sont rcprbentb graphiquement et discutes. 

OPTIMIERUNGSPROBLEME VON KUHLRIPPEN 

ZmaunenfM-Die Probleme der Optimierung des Volumens von Rippen mlt reiner Leitung und mit 
Leitung und Konvektion werden gelBst. Exakte LPisungen ertilt man ftir die einander entsprechenden 
~e~~ittsfl~ch~ und Tem~ratu~e~~iung~. Eine N~he~n~~~sung ist angegeben fib eine Rippe 

mit Konvektion und Strahlung. Die Ergebnisse werden grafisch dargesteiit und diskutiert. 

AHaomrr-PematoTcR aaana nfnntfnfaaaqaa 06-beMa pedep B cny~rfx WCTO~ Tenno- 
nt~OBO~ffOCTff W’fB ffpB HaJfKYKK KOHBeKffUK. noJfyWf?Bf TOUHble FW.ffeKllff p;JfB COOTBBTCT- 
B\-fofffffx ffsomaBeB nonepeBHor0 ce9eHKB if ~~Sn3fpe8eBeKKfi TeMnepaTypbI. IlpaB0ffu~~fi 
TatoKe f~pK6~K~eHHoe pemeH~e fiBR p&pa B 1’.lyYae COB~BCTHO~ Ko~Bei~llf¶~ M ~fB~~¶eHlt~. 

ffpOBeBeH0 o6cymjfeBKe pe3yJfbTaTOB, KOTORWZ rfOCTpOeHbf i-1 W$WfeCKB 


